If you want to talk about water treatment capacity, then sure. Treatment capacity is used for cooling.
That’s not what I’m talking about though. I’m talking about the mass of water being consumed (i.e., removed) from the watershed. The water removed from the river for cooling is returned. There is no net loss of water.
There is a net loss of potable water (or potable water capacity, if you prefer), which is often a capacity bottleneck before non-potable water due to the infrastructure required to generate it. However, according to a comment above, Microsoft is using evaporative coolers, which specifically work by losing water (through evaporation). It’s not a 100% loss rate to the watershed, but it’s not net zero either
It is removed from the system. It’s not practically immediately recoverable. The capacity to supply that water has been spent.
If you want to talk about water treatment capacity, then sure. Treatment capacity is used for cooling.
That’s not what I’m talking about though. I’m talking about the mass of water being consumed (i.e., removed) from the watershed. The water removed from the river for cooling is returned. There is no net loss of water.
There is a net loss of potable water (or potable water capacity, if you prefer), which is often a capacity bottleneck before non-potable water due to the infrastructure required to generate it. However, according to a comment above, Microsoft is using evaporative coolers, which specifically work by losing water (through evaporation). It’s not a 100% loss rate to the watershed, but it’s not net zero either