With something like an Alcubierre drive you can still travel between planets fairly fast. (Though this concept needs basically dark matter or some type of negative energy)
Even missions to Jupiter and Saturn take 5+ years in travel time one way with normal Hohman transfers and gravity assists that still allow for orbaital capture.
Even if you could simply find some type of fuel that would allow something like the Epstein drive (from the Expanse) where you can accelerate at 1g for 1/2 the trip and decel at 1g for the second half that would cut the travel time down to something on the order of like 9 days to Saturn or so.
Using a warp drive for that purpose would be like using a suborbital rocket to pop down to the local mall for some groceries.
9 days is too long to spend on a trip to Saturn? That’s quite the first-world problem, there. Especially given that by the time we’ve got drives like that we’ll likely have life extension and/or hibernation technologies to make the trip’s duration irrelevant.
In any case, as the article says, warp drives are probably not possible anyway.
Don’t agree. Play a little Elite Dangerous or any game that can simulate scale of our solar system. Moving around it, even at multiple times the speed of light can be useful.
Imagine making a trip to Ganymede within a day. It would allow for civilizations expansion while maintaining supply chains and not require each place to be wholly independent.
The biggest problem is sustaining 1g for 9 days straight. It might not sound like much, but it’s a huge amount of delta-v.
Using an Alcubierre drive, would not only reduce the time for the trip, but also the normal space delta-v required, so the amount of fuel, efficiency, and so on.
warp drives are probably not possible anyway
That’s not what it says, and for good reason.
Right now, the work on the math for a warp bubble, done over the last 30 years, has reduced the energy requirements by some dozen orders of magnitude. A form of negative energy is already being used in experiments like LIGO, and a few years ago, what could be considered as “negative mass” was discovered in phonons.
As long as either the theory, or the math, leading to Alcubierre’s calculations doesn’t get disproven, warp drives are “possible”, we just don’t know “how”… and so far, all related experiments are rather going in the direction of getting to the how, not in the direction of disproving it.
Even if it was somehow possible to scrape together enough negative mass to create a warp bubble and even if it was possible to exit that warp bubble at the destination, none of this addresses a much more fundamental problem. Any method of travelling between two points faster than the speed of light is literally equivalent to a method of travelling through time into your own local past and violating causality. There’s no way around that, it’s independent of the actual mechanism used to go FTL.
I think it’s safe to say that warp drives are probably not possible. It’s an extremely extraordinary claim. It’s fine if the physicists want to keep tinkering away at it, but making any significant future plans or projections based on the assumption that they’ll succeed is not a particularly good bet.
With something like an Alcubierre drive you can still travel between planets fairly fast. (Though this concept needs basically dark matter or some type of negative energy)
Even missions to Jupiter and Saturn take 5+ years in travel time one way with normal Hohman transfers and gravity assists that still allow for orbaital capture.
Even if you could simply find some type of fuel that would allow something like the Epstein drive (from the Expanse) where you can accelerate at 1g for 1/2 the trip and decel at 1g for the second half that would cut the travel time down to something on the order of like 9 days to Saturn or so.
Using a warp drive for that purpose would be like using a suborbital rocket to pop down to the local mall for some groceries.
9 days is too long to spend on a trip to Saturn? That’s quite the first-world problem, there. Especially given that by the time we’ve got drives like that we’ll likely have life extension and/or hibernation technologies to make the trip’s duration irrelevant.
In any case, as the article says, warp drives are probably not possible anyway.
Don’t agree. Play a little Elite Dangerous or any game that can simulate scale of our solar system. Moving around it, even at multiple times the speed of light can be useful.
Imagine making a trip to Ganymede within a day. It would allow for civilizations expansion while maintaining supply chains and not require each place to be wholly independent.
I’m not saying it wouldn’t be nice to go fast. I’m saying it isn’t necessary.
Or possible, which makes the debate somewhat moot. We’ll get by with sublight speeds.
The biggest problem is sustaining 1g for 9 days straight. It might not sound like much, but it’s a huge amount of delta-v.
Using an Alcubierre drive, would not only reduce the time for the trip, but also the normal space delta-v required, so the amount of fuel, efficiency, and so on.
That’s not what it says, and for good reason.
Right now, the work on the math for a warp bubble, done over the last 30 years, has reduced the energy requirements by some dozen orders of magnitude. A form of negative energy is already being used in experiments like LIGO, and a few years ago, what could be considered as “negative mass” was discovered in phonons.
As long as either the theory, or the math, leading to Alcubierre’s calculations doesn’t get disproven, warp drives are “possible”, we just don’t know “how”… and so far, all related experiments are rather going in the direction of getting to the how, not in the direction of disproving it.
Even if it was somehow possible to scrape together enough negative mass to create a warp bubble and even if it was possible to exit that warp bubble at the destination, none of this addresses a much more fundamental problem. Any method of travelling between two points faster than the speed of light is literally equivalent to a method of travelling through time into your own local past and violating causality. There’s no way around that, it’s independent of the actual mechanism used to go FTL.
I think it’s safe to say that warp drives are probably not possible. It’s an extremely extraordinary claim. It’s fine if the physicists want to keep tinkering away at it, but making any significant future plans or projections based on the assumption that they’ll succeed is not a particularly good bet.