xkcd: Coordinate Precision but pi (π)?

I tried looking for some answer but found mostly

  • People reciting pi
  • People teaching how to memorize pi
  • How to calculate pi using different formula
  • How many digits NASA uses

Update question to be more specific

In case someone see this later, what is the most advanced object you can build or perform its task, with different length of pi?

0, 3 => you can’t make a full circle

1, 3.1 => very wobbly circle

2, 3.14 => perfect hole on a beach

3, 3.142 => ??

4, 3.1416 => ??

5, 3.14159 => ??

Old question below

In practice, the majority of people will never require any extra digit past 3.14. Some engineering may go to 3.1416. And unless you are doing space stuff 3.14159 is probably more than sufficient.

But at which point do a situation require extra digit?
From 3 to 3.1 to 3.14 and so on.

My non-existing rubber duck told me I can just plug these into a graphing calculator. facepalm

y=(2πx−(2·3.14x))

y=abs(2πx−(2·3.142x))

y=abs(2πx−(2·3.1416x))

y=(2πx−(2·3.14159x))

Got adequate answer from @dual_sport_dork and @howrar
Any extra example of big object and its minimum pi approximation still welcome.

  • deegeese@sopuli.xyz
    link
    fedilink
    arrow-up
    6
    ·
    1 year ago

    I’m not sure that’s a great trick. You have to remember 6 digits to calculate an approximation accurate to 8 digits.

    How many architectures in 2023 still lack a FPU? They were getting pretty rare when I last worked with this stuff 15 years ago.

    • Magister@lemmy.world
      link
      fedilink
      arrow-up
      3
      ·
      1 year ago

      you have to remember 11 33 55 and put the bar in the middle. It is mainly small MCU like ATMEGA and co. lacking FPU, and yes old stuff like Z80 ,6502, etc.