The first commercial PV solar product was nah just in 1909.
See story above, and original article in Modern Electrics magazine in 1909:
https://babel.hathitrust.org/cgi/pt?id=mdp.39015051407073
EDIT
Since people didn’t read past the headline, the article is about a startup company in 1905 that developed a commercial electrical solar panel by 1909 and was worth 160 million in today’s money.
In 1909, the inventor of the solar panel was kidnapped and ordered by his kidnappers to destroy all information about this solar panel. He was eventually released, although he did not destroy the solar panel or his documentation, he did shut down his company.
So this is a pretty fascinating development considering that at this time period we actually did have early production electric cars that were manufactured in larger quantities than gas vehicles, and now we learn that solar panels were commercially available, at least for a short time.
And the solar panels could generate a fair amount of electricity:
500 volts per 10 square ft, and a smaller demonstration panel that was 3 ft x 4 ft could generate 60 watts of power (10 volts @6 amps).
Additionally, the panels were designed to charge a battery backup system.
So it’s a Seebeck Effect generator and really isn’t what we’d call a solar device today.
Sorry - above my pay grade knowing what that is. Got a bit of education to get through.
Basically when there’s a temperature difference been two different metals that are touching a small current is produced. You can also go backwards and use electricity to create a temperature difference (Peltier Effect).
They have niche applications because the effect is pretty small. Hardly a realistic substitute for solar panels that use the photovoltaic effect.
Does this mean - in theory - I can put one metal plate out in sun, one in shade, connect with a wire? Or is it a contact surface area thing?
Pretty sure they have to be together like a creme biscuit. You can’t put one plate on the equator and one in Antarctica and generate infinite electricity
I mean, it’s a DC current so would bleed off over distance anyway.
deleted by creator
It could work… but you would need an adequate layer of vanilla creme to compliment the chocolate.
Engineering is delicious.
Well you could, but the resistance in a wire that long would kill it.
Sure that does work but it’s not efficient.
Thermal solar generators do exist but they use a liquid as a heat transport mechanism. These use mirrors to focus the sun into a single point. In general you get more efficiency when there’s a larger temperature difference.
You could also get infinite energy by digging a deep hole since it gets hotter there deeper you dig. It’s just pretty expensive.
Geothermal is the solution we need more of.
This is how fridges work in reverse right? Apply current and make one side really cold?
The device you’re thinking of might be a peltier or thermoelectric cooler (TEC). But yes. They’re way less efficient than a vapor compression refrigerator, though.
Ohhhh… Thanks!
Fridges work on gas pressure - compress a gas it heats up, decompress a gas it cools…
Wait… then what am I thinking of? I’m sure this effect is used somewhere
Looks like you are also a kiwi (that or an AI bot cus i see you everywhere) so probably in an electric chilibin- the reverse effect can be used to cool one plate of metal and heat up the other side.
The whole internet is AI bots bro. You’re the only real human here.
If I was a human though, I would be Kiwi. Kia ora!
Yeah, I think that’s what I was thinking of.
You are thinking of a thermo-electric cooler (TEC) or peltier cooler. They actually are used on smaller wine fridges but not full sized fridges. They are light-weight, electrically efficient, and reliable. They were also used in the early days of CPU overclocking.
Like the very small fridges that work for a single soda can? Refrigerators use the liquid/gas transition to move heat around. It’s much more efficient.
The only real advantage of Peltiers are simplicity and size.